Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Biomech ; 168: 112061, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663109

RESUMO

The use of polyetheretherketone (PEEK) for cementless femoral total knee arthroplasty (TKA) components is of interest due to several potential advantages, e.g. the use in patients with metal hypersensitivity. Additionally, the stiffness of PEEK closer resembles the stiffness of bone, and therefore, peri-prosthetic stress-shielding may be avoided. When introducing a new implant material for cementless TKA designs, it is important to study its effect on the primary fixation, which is required for the long-term fixation. Finite element (FE) studies can be used to study the effect of PEEK as implant material on the primary fixation, which may be dependent on patient factors such as age, gender and body weight index (BMI). Therefore, the research objectives of this study were to investigate the effect of PEEK vs cobalt-chrome (CoCr) and patient characteristics on the primary fixation of a cementless femoral component. 280 FE models of 70 femora were created with varying implant material and gait and squat activity. Overall, the PEEK models generated larger peak micromotions than the CoCr models. Distinct differences were seen in the micromotion distributions between the PEEK and CoCr models for both the gait and squat models. The micromotions of all femoral models significantly increased with BMI. Neither gender nor age of the patients had a significant effect on the micromotions. This population study gives insights into the primary fixation of a cementless femoral component in a cohort of FE models with varying implant material and patient characteristics.

2.
J Mech Behav Biomed Mater ; 152: 106434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350383

RESUMO

The reliability of computational models in orthopedic biomechanics depends often on the accuracy of the bone material properties. It is widely recognized that the mechanical response of trabecular bone is time-dependent, yet it is often ignored for the sake of simplicity. Previous investigations into the viscoelastic properties of trabecular bone have not explored the relationship between nonlinear stress relaxation and bone mineral density. The inclusion of this behavior could enhance the accuracy of simulations of orthopedic interventions, such as of primary fixation of implants. Although methods to quantify the viscoelastic behavior are known, the time period during which the viscoelastic properties should be investigated to obtain reliable predictions is currently unclear. Therefore, this study aimed to: 1) Investigate the duration of stress relaxation in bovine trabecular bone; 2) construct a material model that describes the nonlinear viscoelastic behavior of uniaxial stress relaxation experiments on trabecular bone; and 3) implement bone density into this model. Uniaxial compressive stress relaxation experiments were performed with cylindrical bovine femoral trabecular bone samples (n = 16) with constant strain held for 24 h. Additionally, multiple stress relaxation experiments with four ascending strain levels with a holding time of 30 min, based on the results of the 24-h experiment, were executed on 18 bovine bone cores. The bone specimens used in this study had a mean diameter of 12.80 mm and a mean height of 28.70 mm. A Schapery and a Superposition model were used to capture the nonlinear stress relaxation behavior in terms of applied strain level and bone mineral density. While most stress relaxation happened in the first 10 min (up to 53 %) after initial compression, the stress relaxation continued even after 24 h. Up to 69 % of stress relaxation was observed at 24 h. Extrapolating the results of 30 min of experimental data to 24 h provided a good fit for accuracy with much improved experimental efficiency. The Schapery and Superposition model were both capable of fitting the repeated stress relaxation in a sample-by-sample approach. However, since bone mineral density did not influence the time-dependent behavior, only the Superposition model could be used for a group-based model fit. Although the sample-by-sample approach was more accurate for an individual specimen, the group based approach is considered a useful model for general application.


Assuntos
Densidade Óssea , Osso Esponjoso , Bovinos , Animais , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Fêmur
3.
Bioengineering (Basel) ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391602

RESUMO

Polyetheretherketone (PEEK) is of interest as implant material for cementless tibial total knee arthroplasty (TKA) components due to its potential advantages. One main advantage is that the stiffness of PEEK closely resembles the stiffness of bone, potentially avoiding peri-prosthetic stress-shielding. When introducing a new implant material for cementless TKA designs, it is essential to study its effect on the primary fixation. The primary fixation may be influenced by patient factors such as age, gender, and body mass index (BMI). Therefore, the research objectives of this finite element (FE) study were to investigate the effect of material (PEEK vs. titanium) and patient characteristics on the primary fixation (i.e., micromotions) of a cementless tibial tray component. A total of 296 FE models of 74 tibiae were created with either PEEK or titanium material properties, under gait and squat loading conditions. Overall, the PEEK models generated larger peak micromotions than the titanium models. Differences were seen in the micromotion distributions between the PEEK and titanium models for both the gait and squat models. The micromotions of all tibial models significantly increased with BMI, while gender and age did not influence micromotions.

4.
J Biomech ; 163: 111949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38281459

RESUMO

Successful osseointegration of press-fit implants depends on the initial stability, often measured by the micromotions between the implant and bone. A good primary stability can be achieved by optimizing the compressive and frictional forces acting at the bone-implant interface. The frictional properties of the implant-bone interface, which depend on the roughness and porosity of the implant surface coating, can affect the primary stability. Several reversible (elastic) and non-reversible (permanent) deformation processes take place during frictional loading of the implant-bone interface. In case of a rough coating, the asperities of the implant surface are compressed into the bone leading to mechanical interlocking. To optimize fixation of orthopaedic implants it is crucial to understand these complex interactions between coating and bone. The objective of the current study was to gain more insight into the reversible and non-reversible processes acting at the implant-bone interface. Tribological experiments were performed with two types of porous coatings against human cadaveric bone. The results indicated that the coefficient of friction depended on the coating roughness (0.86, 0.95, and 0.45 for an Ra roughness of 41.2, 53.0, and a polished surface, respectively). Larger elastic and permanent displacements were found for the rougher coating, resulting in a lower interface stiffness. The experiments furthermore revealed that relative displacements of up to 35 µm can occur without sliding at the interface. These findings have implications for micromotion thresholds that currently are assumed for osseointegration, and suggest that bone ingrowth actually occurs in the absence of relative sliding at the implant-bone interface.


Assuntos
Osseointegração , Próteses e Implantes , Humanos , Osso e Ossos , Interface Osso-Implante
5.
J Orthop Res ; 42(1): 90-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37292040

RESUMO

The effect of long-term periprosthetic bone loss on the process of aseptic loosening of tibial total knee arthroplasty (TKA) is subject to debate. Contradicting studies can be found in literature, reporting either bone resorption or bone formation before failure of the tibial tray. The aim of the current study was to investigate the effects of bone resorption on failure of tibial TKA, by simulating clinical postoperative bone density changes in finite element analysis (FEA) models and FEA models were created of two tibiae representing cases with good and poor initial bone quality which were subjected to a walking configuration and subsequently to a traumatic stumbling load. Bone failure was simulated using a crushable foam model incorporating progressive yielding. Repetitive loading under a level walking load did not result in failure of the periprosthetic bone in neither the good nor poor bone quality tibia at the baseline bone densities. When applying a stumble load, a collapse of the tibial reconstruction was noticed in the poor bone quality model. Incorporating postoperative bone loss led to a significant increase of the failure risk, particularly for the poor bone quality model in which subsidence of the tibial component was substantial. Our results suggest bone loss can lead to an increased risk of a collapse of the tibial component, particularly in case of poor bone quality at the time of surgery. The study also examined the probability of medial or lateral subsidence of the implant and aimed to improve clinical implications. The FEA model simulated plastic deformation of the bone and implant subsidence, with further validation required via mechanical experiments.


Assuntos
Artroplastia do Joelho , Reabsorção Óssea , Prótese do Joelho , Fraturas da Tíbia , Humanos , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Tíbia/cirurgia , Densidade Óssea , Próteses e Implantes/efeitos adversos , Fraturas da Tíbia/cirurgia , Reabsorção Óssea/etiologia , Prótese do Joelho/efeitos adversos
6.
Med Eng Phys ; 122: 104072, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092487

RESUMO

Polyetheretherketone (PEEK) has been proposed as alternative material for total knee arthroplasty implants due to its low stiffness, which may reduce stress-shielding. In cementless fixation, a proper primary fixation is required for long-term fixation. Previous research showed that the lower stiffness of a cementless PEEK femoral component results in larger micromotions at the implant-bone interface compared to a cobalt-chrome femoral component. A titanium inlay on the PEEK implant surface may improve the primary fixation while maintaining the favourable stiffness properties. Therefore, the effect of thickness and stiffness of a titanium inlay on the primary fixation and stress-shielding was investigated. A finite element model of the femur and femoral component was created with five titanium inlay variants. The micromotions and strain energy density (SED) were quantified as outcome measures. The distal thin - proximal thick variant showed the largest resulting micromotions (51.2 µm). Relative to the all-PEEK femoral component, the addition of a titanium inlay reduced the micromotions with 30 % to 40 % without considerably affecting the stress-shielding capacity (strain energy difference of 6 % to 10 %). Differences in micromotions (43.0-51.2 µm) and SED between the variants were relatively small. In conclusion, the addition of a titanium inlay could lead to a reduction of the micromotions without substantially affecting the SED distribution.


Assuntos
Polímeros , Titânio , Benzofenonas , Polietilenoglicóis , Cetonas , Estresse Mecânico
7.
Am J Sports Med ; 51(14): 3724-3731, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37960850

RESUMO

BACKGROUND: Medial patellofemoral ligament (MPFL) reconstruction is associated with high complication rates because of graft overloading from incorrect graft positioning. To improve clinical outcomes, it is crucial to gain a better understanding of MPFL elongation patterns. PURPOSE: To assess MPFL length changes in healthy knees from 0° to 90° of dynamic flexion and their relationship with anatomic parameters of the patellofemoral joint. STUDY DESIGN: Descriptive laboratory study. METHODS: Dynamic computed tomography scans of an active flexion-extension-flexion movement in 115 knees from 63 healthy participants were evaluated to construct knee joint models. Using these models, the MPFL length was measured as the shortest wrapping path from the Schöttle point on the femur to 3 insertion points on the superomedial border of the patella (proximal, central, and distal). MPFL length changes (%) relative to the length in full extension were calculated, and their correlations with the tibial tuberosity-trochlear groove distance, Caton-Deschamps index, and lateral trochlear inclination were analyzed. RESULTS: The proximal fiber was the longest in full extension and progressively decreased to a median length of -6.0% at 90° of flexion. The central fiber exhibited the most isometric pattern during knee flexion, showing a median maximal decrease of 2.8% relative to the full extension length and no evident elongation. The distal fiber first slightly decreased in length but increased at deeper flexion angles. The median overall length changes were 4.6, 4.7, and 5.7 mm for the proximal, central, and distal patellar insertion, respectively. These values were either not or very weakly correlated with the tibial tuberosity-trochlear groove distance, Caton-Deschamps index, and lateral trochlear inclination when the anatomic parameters were within the healthy range. CONCLUSION: The median MPFL length changed by approximately 5 mm between 0° and 90° of flexion. Proximally, the length continuously decreased, indicating slackening behavior. Distally, the length increased at deeper flexion angles, indicating tightening behavior. CLINICAL RELEVANCE: In MPFL reconstruction techniques utilizing the Schöttle point to establish the femoral insertion, one should avoid distal patellar insertion, as it causes elongation of the ligament, which may increase the risk for complications due to overloading.


Assuntos
Luxação Patelar , Articulação Patelofemoral , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamentos Articulares/diagnóstico por imagem , Ligamentos Articulares/cirurgia , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Patela/cirurgia , Tomografia Computadorizada por Raios X , Luxação Patelar/cirurgia
8.
EFORT Open Rev ; 8(7): 499-508, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395678

RESUMO

The objectives of the 1st EFORT European Consensus on 'Medical and Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices' were foremost to focus on patient safety by establishing performance requirements for medical devices. The 1st EFORT European Consensus applied an a priori-defined, modified Delphi methodology to produce unbiased, high-quality recommendation statements, confirmed by consensus voting of a European expert panel. Intended key outcomes are practical guidelines justified by the current stage of knowledge and based on a broad European Expert Consensus, to maintain innovation and optimisation of orthopaedic devices within the boundaries of MDR 2017/745. Twenty-one main research areas of relevance were defined relying on input from the EFORT IPSI WG1 'Introduction of Innovation' recommendations and a related survey. A modified Delphi approach with a preparatory literature review and work in small groups were used to prepare answers to the research questions in the form of 32 draft Consensus statements. A Consensus Conference in a hybrid format, on-site in the Carl Gustav Carus University of Dresden was organised to further refine the draft statements and define consensus within the complete group of participants by final voting, intended to further quantify expert opinion knowledge. The modified Delphi approach provides practical guidelines for hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, patient representatives, Notified Bodies, National Institutes and authorities. For the first time, initiated by the EFORT IPSI (WG1 'Introduction of Innovation'), knowledge of all related stakeholders was combined in the 1st EFORT European Consensus to develop guidelines and result in a comprehensive set of recommendations.

9.
PLoS One ; 18(7): e0288776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498946

RESUMO

For biomechanical simulations of orthopaedic interventions, it is imperative to implement a material model that can realistically reproduce the nonlinear behavior of the bone structure. However, a proper material model that adequately combines the trabecular and cortical bone response is not yet widely identified. The current paper aims to investigate the possibility of using an isotropic crushable foam (ICF) model dependent on local bone mineral density (BMD) for simulating the femoral fracture risk. The elastoplastic properties of fifty-nine human femoral trabecular cadaveric bone samples were determined and combined with existing cortical bone properties to characterize two forms of the ICF model, a continuous and discontinuous model. Subsequently, the appropriateness of this combined material model was evaluated by simulating femoral fracture experiments, and a comparison with earlier published results of a softening Von-Mises (sVM) material model was made. The obtained mechanical properties of the trabecular bone specimens were comparable to previous findings. Furthermore, the ultimate failure load predicted by the simulations of femoral fractures was on average 79% and 90% for the continuous and discontinuous forms of the ICF model and 82% of the experimental value for the sVM material model. Also, the fracture locations predicted by ICF models were comparable to the experiments. In conclusion, a nonlinear material model dependent on BMD was characterized for human femoral bone. Our findings indicate that the ICF model could predict the femoral bone strength and reproduce the variable fracture locations in the experiments.


Assuntos
Fraturas do Fêmur , Fêmur , Humanos , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Densidade Óssea/fisiologia , Osso e Ossos , Fenômenos Biomecânicos
10.
Knee ; 41: 9-17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608361

RESUMO

BACKGROUND: Accurate assessment of knee kinematics is important in the diagnosis and quantification of knee disorders and to determine the effect of orthopaedic interventions. Despite previous studies showing the usefulness of dynamic imaging and providing valuable insights in knee kinematics, dynamic imaging is not widely used in clinics due to a variety of causes. In this study normative knee kinematics of 100 healthy subjects is established using a fully automatic workflow feasible for use in the clinic. METHODS: One-hundred volunteers were recruited and a dynamic CT scan was made during a flexion extension movement. Image data was automatically segmented and dynamic and static images were superimposed using image registration. Coordinate systems for the femur, patella and tibia were automatically calculated as well as their dynamic position and orientation. RESULTS: Dynamic CT scans weremade withan effective radiation dose of 0.08 mSv. The median tibial internal rotation was 4° and valgus rotation is 5° at full flexion. Femoral rollback of the lateral condyle was 7 mm versus 2 mm of the medial condyle. The median patella flexion reached 65% of tibiofemoral flexion and the median tilt and rotation were 5° and 0° at full flexion, respectively. The median mediolateral translation of the patella was 3 mm (medially) in the first 30° of flexion. CONCLUSION: The current study presents TF and PF kinematic data of 97 healthy individuals, providing a unique dataset of normative knee kinematics. The short scanning time, simple motion and, automatic analysis make the methods presented suitable for daily clinical practice.


Assuntos
Articulação do Joelho , Joelho , Humanos , Voluntários Saudáveis , Fenômenos Biomecânicos , Articulação do Joelho/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Amplitude de Movimento Articular , Tomografia Computadorizada por Raios X
11.
Int J Comput Assist Radiol Surg ; 18(4): 775-783, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36327031

RESUMO

PURPOSE: Navigation has been suggested to guide complex benign bone tumor curettage procedures, but the contribution of navigation to the accuracy of curettage has never been quantified. We explored the accuracy of navigated curettage in a cadaveric observational pilot study, comparing navigated to freehand curettage, performed independently by an expert and a novice user. METHODS: The expert performed curettage on 20 cadaveric bones prepared with a paraffin wax mixture tumor, 10 freehand and 10 navigated. We re-used 12 bones for the novice experiments, 6 freehand and 6 navigated. Tumor and curettage cavity volumes were segmented on pre- and post-cone-beam CT scans. Accuracy was quantified using the Dice Similarity Coefficient (DSC), and with remaining tumor volume, bone curettage volume, maximal remaining width and procedure times compared between navigation and freehand groups for both users. RESULTS: There were little differences in curettage accuracy between a navigated (DSC 0.59[0.17]) and freehand (DSC 0.64[0.10]) approach for an expert user, but there were for a novice user with DSC 0.67(0.14) and 0.83(0.06), respectively. All navigated and freehand procedures had some amount of remaining tumor, generally located in a few isolated spots with means of 2.2(2.6) cm3 (mean 20% of the tumor volume) and 1.5(1.4) cm3 (18%), respectively, for the expert and more diffusely spaced with means of 5.1(2.8) cm3 (33%) and 3.0(2.2) cm3 (17%), respectively, for the novice. CONCLUSIONS: In an explorative study on 20 cadaveric bone tumor models, navigated curettage in its current setup was not more accurate than freehand curettage. The amount of remaining tumor, however, confirms that curettage could be further improved. The novice user was less accurate using navigation than freehand, which could be explained by the learning curve. Furthermore, the expert used a different surgical approach than the novice, focusing more on removing the entire tumor than sparing surrounding bone.


Assuntos
Neoplasias Ósseas , Cartilagem Articular , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Tomografia Computadorizada de Feixe Cônico , Cadáver
12.
J Biomech ; 137: 111057, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462265

RESUMO

The use of a more compliant material, such as polyetheretherketone (PEEK), for a cementless femoral component is a potential solution to prevent aseptic loosening caused by peri-prosthetic stress-shielding. Long-term fixation of a cementless femoral component is achieved by a proper primary fixation of the bone-implant interface, which is influenced by the interference fit and frictional properties of the implant surface. This computational study investigates the sensitivity of micromotions and interface gaps of a cementless PEEK femoral component to the interference fit and coefficient of friction. 24 finite element models of the femur and femoral component were created with variations in implant material, interference fit and coefficient of friction. Peak loads of a jogging activity were applied on the models. Micromotions and interface gaps were both sensitive to the interference fit, coefficient of friction and implant material. Besides the implant material, the micromotions and interface gaps of the implant were most sensitive to the interference fit. Compared to the cobalt-chrome (CoCr) femoral component, the PEEK femoral component generated higher micromotions and interface gaps when equal interference fit and friction values were applied. However, increasing the interference fit and friction of the PEEK component resulted in micromotion values comparable with the CoCr component. This result leads to possibilities using cementless PEEK femoral components.


Assuntos
Artroplastia do Joelho , Benzofenonas , Fêmur/cirurgia , Análise de Elementos Finitos , Fricção , Polietilenoglicóis , Polímeros
13.
Bioact Mater ; 15: 120-130, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386344

RESUMO

Malignant bone tumors are usually treated by resection of tumor tissue followed by filling of the bone defect with bone graft substitutes. Polymethylmethacrylate (PMMA) cement is the most commonly used bone substitute in clinical orthopedics in view of its reliability. However, the dense nature of PMMA renders this biomaterial unsuitable for local delivery of chemotherapeutic drugs to limit the recurrence of bone tumors. Here, we introduce porosity into PMMA cement by adding carboxymethylcellulose (CMC) to facilitate such local delivery of chemotherapeutic drugs, while retaining sufficient mechanical properties for bone reconstruction in load-bearing sites. Our results show that the mechanical strength of PMMA-based cements gradually decreases with increasing CMC content. Upon incorporation of ≥3% CMC, the PMMA-based cements released up to 18% of the loaded cisplatin, in contrast to cements containing lower amounts of CMC which only released less than 2% of the cisplatin over 28 days. This release of cisplatin efficiently killed osteosarcoma cells in vitro and the fraction of dead cells increased to 91.3% at day 7, which confirms the retained chemotherapeutic activity of released cisplatin from these PMMA-based cements. Additionally, tibias filled with PMMA-based cements containing up to 3% of CMC exhibit comparable compressive strengths as compared to intact tibias. In conclusion, we demonstrate that PMMA cements can be rendered therapeutically active by introducing porosity using CMC to allow for release of cisplatin without compromising mechanical properties beyond critical levels. As such, these data suggest that our dual-functional PMMA-based cements represent a viable treatment option for filling bone defects after bone tumor resection in load-bearing sites.

14.
J Mech Behav Biomed Mater ; 128: 105103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121426

RESUMO

Cementless total knee arthroplasty (TKA) components have rough and porous surface coatings which can enhance bone ingrowth and stability at the bone-implant. To achieve primary stability in the postoperative period where no apposition is formed, the resistance against motions between bone and implant is optimized by increasing the friction at the interface. This is necessary, as excessive relative motions can inhibit bone ingrowth, which might result in loosening and pain. In this research, it was found that the friction can be predicted by measuring the surface morphology of rough implants, and calculating the corresponding perpendicular and lateral contact area parameters. The ratio between these areas, is used to predict the resulting coefficient of friction (COF). This is validated experimentally, by analysing the tribological behaviour of 2 porous and rough titanium coatings against human cadaveric knee bones using reciprocal friction tests with varying normal loads. The results for 2 different coatings showed similar findings for the predicted COF (0.75 and 0.88) versus the calculated values based on the measurement (0.82 and 0.86) proving the feasibility of the approach.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Interface Osso-Implante , Fricção , Humanos , Articulação do Joelho/cirurgia , Porosidade
15.
Med Eng Phys ; 99: 103734, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058027

RESUMO

Sufficient primary stability through interference fit is required for bone ingrowth and subsequent long-term fixation of cementless knee replacement implants, and can be evaluated in experimental testing. In this study, primary stability of a novel posterior-stabilized (PS) femoral component (Attune PS) and a contemporary PS component (Triathlon PS) were analyzed, and compared to previous outcomes of cruciate-retaining (CR) implants. Potential bone ingrowth was evaluated by measuring micromotions over the implant-bone interface in six cadaveric femur pairs under two loading conditions using digital image correlation, for a paired comparison of the PS implants. Push-off forces required to achieve implant removal under high-flexion were determined as a measure of implant fixation. Achieved interference fit was determined by reconstructing the implant positions through use of separate implant and resected bone geometries. Lower overall micromotions and a higher average push-off force were measured in the Attune PS implant, indicating increased initial fixation compared to the Triathlon PS design. Interference fit was significantly higher for the Attune PS and was related to lower gait micromotions in Triathlon and overall PS groups. Based on reported clinical results and the comparison with available CR implant results, both PS implants are expected to provide sufficient initial clinical stability.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fenômenos Biomecânicos , Fêmur/cirurgia , Marcha , Humanos , Articulação do Joelho/cirurgia , Desenho de Prótese , Amplitude de Movimento Articular
16.
J Biomed Mater Res B Appl Biomater ; 110(4): 776-786, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34661334

RESUMO

Periprosthetic bone loss is an important factor in tibial implant failure mechanisms in total knee arthroplasty (TKA). The purpose of this study was to validate computational postoperative bone response using longitudinal clinical DEXA densities. Computational remodeling outcome over a population was obtained by incorporating the strain-adaptive remodeling theory in finite element (FE) simulations of 26 different tibiae. Physiological loading conditions were applied, and bone mineral density (BMD) in three different regions of interest (ROIs) was considered over a postoperative time of 15 years. BMD outcome was compared directly to previously reported clinical BMD data of a comparable TKA cohort. Similar trends between computational and clinical bone remodeling over time were observed in the two proximal ROIs, with most rapid bone loss taking place in the initial months after TKA and BMD starting to level in the following years. The extent of absolute proximal BMD change was underestimated in the FE population compared with the clinical subject group, which might be the result of significantly higher initial clinical baseline BMD values. Large differences in remodeling response were found in the distal ROI, in which resorption was measured clinically, but a large BMD increase was predicted by the FE models. Multiple computational limitations, related to the FE mesh, loading conditions, and strain-adaptive algorithm, likely contributed to the extensive local bone formation. Further research incorporating subject-specific comparisons using follow-up CT scans and more extensive physiological knee loading is recommended to optimize bone remodeling more distal to the tibial baseplate.


Assuntos
Artroplastia do Joelho , Absorciometria de Fóton , Densidade Óssea , Remodelação Óssea , Humanos , Tíbia/cirurgia
17.
Med Eng Phys ; 96: 53-63, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565553

RESUMO

Finite element (FE) simulations can be used to evaluate the mechanical behavior of human bone and allow for quantitative prediction of press-fit implant fixation. An adequate material model that captures post-yield behavior is essential for a realistic simulation. The crushable foam (CF) model is a constitutive model that has recently been proposed in this regard. Compression tests under uniaxial and confined loading conditions were performed on 59 human trabecular bone specimens. Three essential material parameters were obtained as a function of bone mineral density (BMD) to develop the isotropic CF model. The related constitutive rule was implemented in FE models and the results were compared to the experimental data. The CF model provided an accurate simulation of uniaxial compression tests and the post-yield behavior of the stress-strain was well-matched with the experimental results. The model was able to reproduce the confined response of the bone up to 15% of strain. This model allows for simulation of the mechanical behavior of the cellular structure of human bone and adequately predicts the post-yield response of trabecular bone, particularly under uniaxial loading conditions. The model can be further improved to simulate bone collapse due to local overload around orthopaedic implants.


Assuntos
Osso e Ossos , Osso Esponjoso , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Simulação por Computador , Análise de Elementos Finitos , Humanos , Estresse Mecânico
18.
Front Microbiol ; 12: 622356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276576

RESUMO

Parasites often have complex developmental cycles that account for their presence in a variety of difficult-to-analyze matrices, including feces, water, soil, and food. Detection of parasites in these matrices still involves laborious methods. Untargeted sequencing of nucleic acids extracted from those matrices in metagenomic projects may represent an attractive alternative method for unbiased detection of these pathogens. Here, we show how publicly available metagenomic datasets can be mined to detect parasite specific sequences, and generate data useful for environmental surveillance. We use the protozoan parasite Cryptosporidium parvum as a test organism, and show that detection is influenced by the reference sequence chosen. Indeed, the use of the whole genome yields high sensitivity but low specificity, whereas specificity is improved through the use of signature sequences. In conclusion, querying metagenomic datasets for parasites is feasible and relevant, but requires optimization and validation. Nevertheless, this approach provides access to the large, and rapidly increasing, number of datasets from metagenomic and meta-transcriptomic studies, allowing unlocking hitherto idle signals of parasites in our environments.

19.
J Mech Behav Biomed Mater ; 118: 104435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721771

RESUMO

Cementless total knee arthroplasty (TKA) implants rely on interference fit to achieve initial stability. However, the optimal interference fit is unknown. This study investigates the effect of using different interference fit on the initial stability of tibial TKA implants. Experiments were performed on human cadaveric tibias using a low interference fit of 350 µm of a clinically established cementless porous-coated tibial implant and a high interference fit of 700 µm. The Orthoload peak loads of gait and squat were applied to the specimens with a custom-made load applicator. Micromotions and gaps opening/closing were measured at the bone-implant interface using Digital Image Correlation (DIC) in 6 regions of interest (ROIs). Two multilevel linear mixed-effect models were created with micromotions and gaps as dependent variables. The results revealed no significant differences for micromotions between the two interference fits (gait p = 0.755, squat p = 0.232), nor for gaps opening/closing (gait p = 0.474, squat p = 0.269). In contrast, significant differences were found for the ROIs in the two dependent variables (p < 0.001), where more gap closing was seen in the posterior ROIs than in the anterior ROIs during both loading configurations. This study showed that increasing the interference fit from 350 to 700 µm did not influence initial stability.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Interface Osso-Implante , Marcha , Humanos , Próteses e Implantes , Desenho de Prótese , Tíbia/cirurgia
20.
J Biomech ; 118: 110270, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33578052

RESUMO

Due to their high stiffness, metal femoral implants in total knee arthroplasty may cause stress shielding of the peri-prosthetic bone, which can lead to loss of bone stock. Using a polymer (PEEK) femoral implant reduces the stiffness mismatch between implant and bone, and therefore has the potential to decrease strain shielding. The goal of the current study was to evaluate this potential benefit of PEEK femoral components in cadaveric experiments. Cadaveric femurs were loaded in a materials testing device, while a 3-D digital image correlation set-up captured strains on the surface of the intact femurs and femurs implanted with PEEK and CoCr components. These experimental results were used to validate specimen-specific finite element models, which subsequently were used to assess the effect of metal and PEEK femoral components on the bone strain energy density. The finite element models showed strain maps that were highly comparable to the experimental measurements. The PEEK implant increased strain energy density, relative to the preoperative bone and compared to CoCr. This was most pronounced in the regions directly under the implant and near load contact sites. These data confirm the hypothesis that a PEEK femoral implant can reduce peri-prosthetic stress shielding.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Benzofenonas , Simulação por Computador , Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Cetonas , Polietilenoglicóis , Polímeros , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...